Extended Abstract

Motivation Computer-Aided Design (CAD) programs are the fundamental building blocks for
a variety of scientific and engineering fields that requires precise modeling criteria. However,
automating CAD designs have been challenging, because there is a limited amount of data available
for training a fully supervised model. In this project, we explore the potential of using Reinforcement
Learning to address this issue, by training a CAD agent to reconstruct the CAD command sequence
from geometric rewards. By scaling up this approach, we can essentially leverage large-scale 3D or
2D data to train a CAD generator generating diverse assets with the full CAD command sequence.

Method We use Proximal Policy Optimization (PPO) to train a RL agent that predict the CAD
commands given an input 3D shape. We develop a factorized policy distribution that is capable of
outputting both discrete and continuous actions in order to accommodate the action space of CAD
generation. Specifically, we model a categorical distribution over the discrete choices and a Gaussian
distribution for the continuous parameters given a specific discrete action choice. We develop a
custom policy network architecture to accommodate the above policy factorization. The factorized
policy distribution has closed-form standard deviation and entropy terms, making it easy to integrate
it into a traditional PPO pipeline. For the rewards, we use a combination of two rewards that both
account for the geometric and formatting errors of the constructed CAD program w.r.t. the input
shape. Specifically, the geometric rewards measures the intersection-over-union (IOU) between
the current CAD reconstruction and the input shape. A higher IOU implies that the two shapes
are geometrically close to each other and vice versa. A formatting reward is assigned to punish an
episode whenever it fails to convert the current CAD command sequence into a valid CAD shape.
This happens when either invalid parameters are predicted or the CAD executions fail. In these cases,
a negative reward is added.

Implementation We implement a custom environment that builds the CAD program using the
Open Cascade [Paviot| (2022). For the policy network, we sample points on both the current CAD
shape and the ground truth shape and pass them through a PointNet Qi et al.|(2016). Together with
the current CAD command sequence, the encoded features are passed through the discrete head
network to predict logits for the categorical distribution over the discrete actions. Finally, concatenate
learned embeddings for each discrete action with the point features and the action sequence to output
the continuous distributions for each discrete action choice. The PPO algorithm is implemented on
top of TianShou Weng et al.| (2022) framework.

Results We conducted overfitting experiments where a specialized agent is fitted to reconstruct one
CAD shape using the abovementioned pipeline. We conducted two sets of experiments. The first
set uses a toy setting to validate the effectiveness of using RL for CAD modeling, and the second
experiment leverages the entirety of the above pipeline to train an RL agent for CAD modeling. The
validation experiment was able to output a CAD sequence that reconstructs the rough geometry of the
input shape. However, details are still missing, potentially due to the insensitivity of rewards to the
details. The full experiment was only able to output correct geometry when the CAD sequence was
short. This is potentially due to that we did not initialize our policy network from imitation learning,
making the initial exploration phase difficult.

Discussion & Conclusion This project investigates the potential of using RL algorithms for CAD
command sequence generation. Specifically, we developed a novel factorized action policy to
accommodate the hybrid action space of CAD modeling, as well as designed specific rewards to
encourage the RL to learn to reconstruct the input shape. Experimentally, the validation experiment
shows the promise in this direction for further investigation. For future steps, we would like to
pre-trained the action policy network with supervised training, so that the policy network starts
from more informative knowledge about the CAD command sequence. We believe that pre-training
would help the performance of RL for CAD generation. Further, we would like to incorporate more
semantically informative rewards using other modalities such as images or segmentation masks to
encourage the RL agent to fill in the details as well. Curriculum training could also be considered to
encourage the RL agent to learn the rough geometry first before attending to the geometric details.

Learning CAD Program Generation using
Reinforcement Learning

George Nakayama
Department of Computer Science
Stanford University
wa47566770@stanford.edu

Abstract

This project investigates the potential of using RL algorithms for CAD command
sequence generation. Specifically, we developed a novel factorized action policy
to accommodate the hybrid action space of CAD modeling, as well as designed
specific rewards to encourage the RL to learn to reconstruct the input shape. Our
experiment demonstrates initial progress towards this direction, with the RL agent
capable of reconstructing the 3D shapes with only geometric and format rewards —
without using the full CAD command history as training data. By further expanding
upon this project, we could enable large-scale training on 3D shape dataset using
RL algorithms, alleviating the data bottleneck of CAD models with full modeling
history.

1 Introduction

CAD programs refer to computer-aided design programs, which are the fundamental building
blocks for a variety of scientific and engineering fields. Specifically, it represents 3D objects through
sequences of geometric instructions, commonly referred to as CAD commands, which defines editable
geometric components and operations. Despite the emergence of various 3D modeling software
(e.g., AutoCAD, SketchUp, Rhino, and FreeCAD), the design workflow persists as a technically
challenging and labor-intensive process: it is time-consuming and requires specialized expertise
from designers and/or engineers. In the design phase, they use CAD drawings for their precision
and ease of editability. During manufacturing, these drawings are converted into constraint-based
parameter tables, and for simulation, they yield boundary-representation (B-Rep) data or textual
geometry descriptions. While the full design history is not used for downstream applications, current
CAD software requires experts to design and modify the model, while the CAD programs need to be
frequently updated by communicating with the users. Therefore, it is desirable to develop a toolbox
with which the expert, or even the non-expert, can easily design the CAD models by using simple
instructions and illustrations to make the ideas in their mind easily come true.

With the advance of machine learning and Al generative models for 3D content, there are many works
that generates 3D shapes from text, images, and other user-friendly inputs. However, in contrast to the
fast development in 3D generative methods in other shape representations such as point clouds Zeng
et al.| (2022)), voxels |Ren et al.|(2024), meshes [Shen et al.|(2024)), and implicits |Park et al.| (2019)),
CAD program generation achieved limited success. So far, CAD program generation is mainly
limited to supervised training using full history CAD programs. While this approach treats CAD
programs essentially as text and thereby leverages the success of LLM pre-training, it achieved only
limited generation performance primarily due to the limited amount of training data, making the
training of large-scale neural networks capable of diverse output infeasible.

The goal of this project is to learn a policy network, which can act as a CAD program generative
model, that is able to perform CAD program generation using reinforcement learning. The motivation

Stanford CS224R 2025 Final Report

behind such an approach is to be able to optimize the policy network on shapes without ground truth
CAD programs using heuristic rewards, and therefore leverage existing large-scale 3D shape dataset
such as ShapeNet|Chang et al.|(2015)) and Objaverse Deitke et al.| (2022). Hopefully, this can help the
policy network to generate a greater variety of shapes without a groundtruth CAD program.

2 Related Work

CAD generation is a long-standing topic in computer graphics and machine learning. It can mainly
be categorized into two sub-directions for research.

BREP-based Shape Generation BREP 3D models are depicted as graphs, incorporating both
geometric primitives (e.g., parametric curves and surfaces) and topological primitives (e.g., vertices,
edges, and faces) that trim and stitch surface patches to form solid models |Xu et al.| (2024a). Earliest
works focused on BREP classification and segmentation, using a graphical neural network |Willis et al.
(2021);10./ (2020); Jayaraman et al.|(2023)), custom convolution kernels |Lambourne et al.| (2021)),
and hierarchical graph structures Jones et al.| (2022} 2021)); Bian et al.|(2023) to leverage the graph
properties of these shapes.

For generation tasks, previous approaches used predefined template curves and surfaces/Sharma et al.
(2020); Smirnov et al.| (2021)); Wang et al.| (2022, [2020); Li et al.| (2018)). Specifically, PolyGen |Nash
et al| (2020), the pioneer work in this area, uses a pointer network |Vinyals et al.| (2017) with
Transformers [Vaswani et al.| (2023) to generate n-gon meshes, which can be treated as a special
case of BREP shapes with planar faces and straight edges. SolidGen [Jayaraman et al.| (2023) and
BrepGen Xu et al.|(2024a)) can generate the entire BREP shape. SolidGen Jayaraman et al.| (2023)
first synthesizes vertices and then constructs them with the edge topology. BrepGen |Xu et al.| (2024a)
progressively denoises the faces, edges, and vertices utilizing Diffusion models |[Ho et al.| (2020).
Although B-rep is a direct representation of the boundary of the CAD model, and these generative
methods are able to obtain better performance because there is more data in this format; the generated
results do not contain the modeling history of the generation, limiting their abilities to perform
downstream editing or manipulation of the generated shapes.

CAD Program Generation The second area are methods that try to generate the full modeling
history along with the final CAD program.

Existing CAD program generation methods are used for reverse engineering the full CAD program
from input point clouds and/or images, text inputs. Point clouds are the most well-studied input
modality in CAD reconstruction. The seminal work on point cloud-based CAD reconstruction,
DeepCAD by |Wu et al.|(2021])), proposed encoding CAD sketch-and-extrude sequences as special
tokens. Beyond that, DeepCAD also proposed the first large-scale dataset of 180k hand-crafted
CAD modeled scraped from the OnShape online repository. Subsequent works [Chen et al.| (2025));
Khan et al.|(20244a)); Xu et al.| (2022); Dupont et al.| (2024)); Ma et al.| (2023)) adopted the same CAD
representation and trained on the same DeepCAD dataset. More recently, CAD-Recode [Rukhovich
et al.[(2024) introduced a paradigm shift by representing CAD models as Python code, providing
greater expressiveness and flexibility, and released a new training dataset of approximately 1 million
procedurally generated CAD samples. More recently, works |Chen et al.|(2025);|You et al.| (2024));
Yuan et al.|(2024); [Wang et al.|(2025); Khan et al.| (2024b) have explored CAD reconstruction from
other input modalities, such as single- or multi-view images and natural language descriptions. These
approaches extend the DeepCAD dataset by rendering synthetic views or generating textual captions
for existing CAD models. Among them, CADCerafter Chen et al.| (2025) proposes an unified frame-
work that handles both single- and multi-view inputs using a latent diffusion model Rombach et al.
(2021) to sample from the latent space of DeepCAD. For text-to-CAD generation, Text2CAD [Khan
et al.|(2024b)) uses a vision-language model (VLM) to generate captions for CAD programs in the
DeepCAD dataset and trains an autoregressive model to predict the corresponding sketch-and-extrude
sequences given these text inputs. Finally, with the advance of Multimodal LLMs |OpenAl et al.
(2024); [Liu et al.| (2024); |Grattafiori et al.|(2024)), works such as CAD-GPT Kapsalis| (2024) and
CAD-MLLM Xu et al.|(2024b) takes in multimodal input conditioning to reconstruct the desired CAD
programs. They both fine-tune existing Multimodal LLMs on DeepCAD programs with multimodal
annotations.

CAD construction process:
EE VS

. -
_—

__ Sketch1 Extrude 1

Ls_~

L

[. Ell
Ry
. >

Sketch 2 Extrude 2

Current
Reconstruction

o -

Ground Truth
Shape

100d Xel

o
o
2
=
=
<]
=
7]
ac
@
)
a

n(cld,s)

(soL); : 0 i Es:(0,0,0,-2,-1,0,3, ¢ 3
H : [3 =
Ly :(2,0) 1,0, New body, One-sided) ’ = z
A3:(2,2,m,1) (SOL)g : 0 - -
Ls:(0,2) Ryp : (0,0,1.125) CAD Seq -
Ls : (0,0) Eq : (0,0,0,-2,0,0,2.25, g
(SOL)g : 0 2,0, Join, One-sided) EN ndls)
R7:(2,1,0.5) (E0S)12 : 0 g
=

Figure 1: Method Overview. (Left) Example of a CAD construction process adopted from Deep-

CAD (2021)) using the sketch-extrude paradigm. (Right) The proposed factorized policy
network that separates the discrete actions (7(d|s)) and the continuous actions (7 (c|d,)).

A pioneering work in this area is DeepCAD (2021). In this work, the authors proposed to
focus on the type of CAD programs built solely with sequences of sketch-extrude operations, and
proposed a dataset containing CAD programs with modeling history. Building on the task setup of
DeepCAD, many works [Xu et al | (2022); Ma et al.| (2023)); [Khan et al.| (2024a); [Chen et al.| (2025));
[Dupont et al.| (2024); [You et al.| (2024); Ma et al.|(2024) improves upon it by extending the method to
more tasks such as CAD prediction from images |You et al.| (2024), voxelsLambourne et al.|(2022),
and texts [Khan et al.| (2024c); [Wu et al/| (2024). However, all of these works rely on full supervision

using the DeepCAD dataset, fundamentally limiting the scale and variety of their generated CAD
programs. In our work, we will also focus on generating CAD programs in this paradigm. However,
in contrast to these methods, which require supervision on the modeling history, reinforcement
learning allows us to update the policy network using 3D shapes without CAD modeling history.

Past literature also tried to use unsupervised learning approaches to directly generate CAD programs
in the sketch-extrude paradigm [Li et al. (2024); Jones et al.| (2023)). However, these approaches
typically only allows for a limited sequence length, and thereby restricting the representation power of
these methods. For us, however, the policy network can generate the operations in an auto-regressive
manner; therefore, in theory, achieve infinite-length CAD operations.

3 Method

We detail our approach to using reinforcement learning for CAD program generation below. Specif-
ically, Sec. 3.1] details the sketch-extruce CAD construction process we adopt for this paper. In
Sec. we present our data preparation process together with statistics of the datasets. Finally, in

Sec.|3.3|and Sec.[3.4] we outline how we adopt Proximal Policy Optimization (PPO)
(2017) for CAD program generation as well as the rewards we use to training PPO.

3.1 CAD Representation for Neural Networks

CAD programs consist of two levels of representation. When users are designing a CAD model,
they will perform a sequence of operations in a CAD software to create a solid shape. Typically,
different CAD software contains a different set of operations. For example, users may draw a set of
closed curves and lines on a 2D plane, and then perform extrusions on faces formed by the curves to
convert them into 3D shapes. Other common operations include sweeping, revolving, and lofting,
all of which define 3D shapes using 2D faces on the sketch. Additionally, different 3D primitives
created this way are further processed by other operations such as a boolean union, difference, or
intersection to create the final desired 3D model (see Fig. |I| (left)). We refer to such a specification as
a CAD command sequence.

As the users are creating the CAD models using a sequence of commands, the CAD software builds
a kernel representation of the CAD program, widely known as the boundary representation (or

BREP) Xu et al| (2024d); Lambourne et al.| (2021). BREP describes a solid purely by the topology

and geometry of its outer shell: vertices store points, edges link the vertices following pre-defined

Counts

10! 4

]
10 Bl 1 JI[

0 500 1000 1500 2000 2500

Sequence Length

(a) Sequence Length Histogram of the DeepCAD (b) The CAD program with the longest sequence length
Dataset. in the DeepCAD dataset.

Figure 2: The DeepCAD Dataset

curves, and faces are formed by patching together edge loops on analytic or spline surfaces. While
BRERP is usually the output format for standard industry software, shapes represented this way cannot
be as easily edited by casual users as the CAD command sequence.

In this work, we aim for a generative model of CAD command sequences. Specifically, following prior
works [Wu et al.| (2021); [Xu et al.| (2022)), we adopt the sketch-extrude paradigm for CAD modeling.
While previous works use full supervised learning to learn how to generate CAD programs from
human demonstrations, in this project we explore the usage of reinforcement learning to automatically
discover CAD command sequence from 3D geometric rewards.

3.2 Data Preparation

This project requires both a CAD dataset with a full CAD modeling command sequence. To this end,
we will use the DeepCAD dataset[Wu et al| (2021)), which contains around 120k CAD programs from
the OnShape Repository, filtered to only contain sketch-extrude types of operation. The sequence
length of shapes in the dataset varies, but with most of the shapes ranging between 1-4 operations in
total. See Fig. [2|for the sequence length statistic (left) as well as the CAD program in the DeepCAD
dataset with the longest sequence length (right).

DeepCAD dataset consists mostly of mechanical parts designed for engineering purposes. To increase
the diversity of the data shapes, we also consider other datasets. While we did not have time to explore
other datasets besides the DeepCAD dataset, to train the RL policy on shapes without groundtruth
CAD operations, we also consider adopting the large-scale ShapeNet dataset/Chang et al.| (2015)),
which contains clean 3D models with manually verified category and alignment annotations. It covers
55 common object categories with about 51,300 unique 3D models. ShapeNet has been used for
many 3D machine learning tasks due to its combination of variety, cleanness, and annotation richness.
Thus, it will be a good starting point for this project to test the feasibility of fine-tuning the policy
network for the generation of more complex shapes.

3.3 Factorized Hybrid Action Policy for PPO

After processing the DeepCAD dataset, we delineate how we design our policy network and adopt
PPO for CAD generation with reinforcement learning.

As discussed in previous sections, modeling a CAD program requires both discrete actions, such
as choosing types of curves to draw (lines, arcs, and circles), and the shape boolean operations to
use (union, difference, and intersection), and continuous actions, including the parameters for each
CAD modeling command. To this end, we require our action policy network to be able to output both
continuous actions and discrete actions.

Below, we formalize the above discussion. Let D be the random variable corresponding to the
discrete actions and C' be the r.v. corresponding to the continuous actions. Given state s, we wish
to model the action distribution g (C, D|s), that is, the probability of choosing one continuous and
discrete action given the current state s. Now, because the continuous actions in CAD programs are
only determined after the discrete choices are made, we can factorize the action policy to

7o (C, D|s) = w (C|D, s) w9 (D]s) . (1

Compared to the left hand side, the right hand side’s factorized distribution allows us to separate the
prediction of the discrete distribution 7y (D|s) and the continuous distributions 7 (C|D, s) given a
discrete action choice D. Comparing with other approaches to modeling a hybrid action space, such
as discretizing the continuous space into fixed bins, this approach losslessly retains the full precision
of the continuous parameters. Moreover, while other appaoches such as Hybrid PPO |Fan et al.| (2019)
require a different algorithm to handle hybrid action sequences, the factorized policy can be plugged
into any RL algorithms without modifications.

To model the factorized policy, we construct a custom policy network that respects the probability
diagram. As shown on the right side of Fig.[I] we first use the information from the state s to
predict the discrete action via the discrete head. Then, for each discrete action, we predict a separate
continuous distribution (Gaussian in our experiments) that parametrizes 7y (C|D, s). Notice that
it is crucial to predict one distribution for each discrete action D, since the continuous part of the
factorization given in Eq.[I]depends on the discrete action D.

3.4 Reward Design

How to design a reward function so that it can give the policy network meaningful optimization
signal becomes one of the keys to the success of PPO training. We adopt two reward functions in our
training. The first reward is a geometric one, where we encourage the reconstructed CAD sequence
to be as close as possible to the input ground truth shape. To this end, we use intersection-over-union
(IOU) as the geometric reward. Specifically, given two shapes S, S’, the IOU reward is defined as
1SN

I0U(S, S") SUS 2
where |\S N 5’| is the volume of the intersection of .S and S’ and |S U S’| is the volume of their
union. Notice that when S = 5’ their IOU score will be 1, as their intersection and their union
will equal exactly. In general, a higher value of IOU indicates a better similarity between the two
shapes. Thus, PPO that maximizes this reward will encourage the reconstructed CAD sequence to be
as geometrically close as possible to the target.

The second reward term we adopt is similar to the format reward used when training for LLM’s
reasoning capability DeepSeek-Al et al.[(2025). Specifically, because the CAD reconstruction from
a sequence of CAD commands sometime will fail to execute, we want to punish the agent from
outputting such a command sequence. Therefore, we assign a negative reward Rp(S) = —10
whenever the CAD execution of S fails.

In total, the reward at every environment step consists of the sum

R(S, S/) =100 - IOU(S, S/) + Rfail(S). 3)

4 Experimental Setup

Following what is described in Sec. 3] we implement a PPO training for CAD generation. Specifically,
we implement a custom gym environment that builds the CAD program using the Open Cascade|[Paviot
(2022). At every environment step call, the environment will build the CAD model from the current
CAD command sequence and evaluate the aforementioned rewards.

As inputs to the policy network, the CAD shapes will first sample points from their surfaces, and
be passed through a PointNet |Qi et al.|(2016)) to be encoded as a latent feature. Together with the
current CAD command sequence, the encoded feature are passed through the discrete head network
parameterized as a 3 layer MLP to predict logits for the categorical distribution over the discrete
actions. Finally, concatenate learned embeddings for each discrete action with the point features

Reconstruction

B O W = | N N

[O U T T ey e N N |
Ground Truth

Reconstruction

T @@ e e e e e

e i
- = = = A — e

=
[AS
T EmrmmmpEmaseasse T T T
Ground Truth

Figure 3: Visualization of the initial results.

and the action sequence to output the means of the continuous actions for each discrete choice. The
variance of each continuous distribution is a learnable variable.

The PPO algorithm is implemented on top of TianShouWeng et al.| (2022) framework, with a buffer
size of 750 steps and a constant learning rate of 1e — 3. We use a clip ratio of 0.2 and an entropy
regularization weight of 0.05. We also use advantage normalization and gradient norm clipping to
stabilize the optimization.

5 Results

Due to time constraint, we only conducted overfitting experiments where a specialized agent is
fitted to reconstruct one CAD shape using the abovementioned pipeline. We conducted two sets
of experiments. The first set uses a toy setting to validate the effectiveness of using RL for CAD
modeling, and the second experiment leverages the entirety of the above pipeline to train an RL agent
for CAD modeling.

5.1 Validation Experiment

The initial experiment was conducted by training an RL algorithm to predict only the discrete actions.
To make the RL task easier, we manually created a sequence of actions to take for the agent to
reconstruct the entire CAD program. This way, the difficulty of predicting continuous actions is
eliminated for now. The agent is trained with Chamfer Distance only w.r.t. to the target CAD program.
In this way, supervised pre-training is not used.

Fig. 3] shows the results of a single CAD program overfitting under this setting. Notice that the
reconstruction is able to get the overall geometry of the CAD program. However, it misses details
such as holes on the side or protrusions at the bottom of the square on the top row, and the outer edges
in the bottom row. This is due to the insensitivity of the reward function, a.k.a., Chamfer distance,
w.r.t. to small geometric details. However, this do provide a promising starting point for using PPO
for CAD modeling.

5.2 Full Experiment

We use the pipeline described in Sec. [33]and Sec. [3:4]to train a PPO algorithm to predict the CAD
command sequence. Compared to the validation experiment above, the full experiment requires the
agent to predict both continuous and discrete actions correctly for the final CAD model to be similar
to the input shape. Thus, this setting is much harder compared to the previous one, which resulted in
less performant results.

Fig. @] shows a successful case in which the agent is able to reconstruct the input shape relatively well.
In this case, the agent learned to place the primitives correctly at the right orientations and locations,

Input Shape Reconstructed CAD Sequence

—

u

Figure 4: Visualization of results using the full pipeline in Sec.

train/returns_stat/mean
cad_00478620 = cad_00059391

300
250
200
150
100

50
Step

20k 40k 60k 80k 100k

Figure 5: Reward comparison of two runs of different shapes.

as well as choose the correct Boolean operations. However, the results on more complicated shapes
the involves either more steps for constructions or negative Boolean operations such as cutting or
differencing, faced convergence issues. Specifically, as shown in Fig.[5] the PPO training is stuck at
local minima for certain shapes (e.g., shape 00478620 in the figure), because the model did not learn
to take the correct step and had a collapsing action distribution. This might be due to it requirement of
using a shape intersection shape to obtain the final shape, which might be hard for the RL algorithm
to learn, as the initial attempts of doing so would lead to negative rewards. Further investigation
is needed in terms of the choice of hyperparamters as well as the RL algorithm for making the
convergence better.

6 Discussion & Conclusion

This project investigates the potential of using RL algorithms for CAD command sequence generation.
Specifically, we developed a novel factorized action policy to accommodate the hybrid action space of
CAD modeling, as well as designed specific rewards to encourage the RL to learn to reconstruct the
input shape. While the results are not as high quality as we had wished for, the validation experiment
does show the promise in this direction for further investigation. For future steps, we would like to
pre-trained the action policy network with supervised training, so that the policy network starts from
more informative knowledge about the CAD command sequence. We believe that pre-training would
help the performance of RL for CAD generation. Further, as noted in the validation experiment, the

geometric reward currently does not reflect the accuracy of small geometric details. Thus, we would
like to incorporate more semantically informative rewards using other modalities such as images or
segmentation masks to encourage the RL agent to fill in the details as well. Curriculum training could
also be considered to encourage the RL agent to learn the rough geometry first before attending to the
geometric details.

7 Team Contributions

* George Nakayama: Sole author of the project.

Changes from Proposal Due to time and computational budget constraints, we did not have time
to implement supervised fine-tuning as described in the proposal. We also did not get a chance to test
on ShapeNet and other more large-scale datasets, as we have only conducted overfitting experiments.

References

2020. Graph Representation of 3D CAD Models for Machining Feature Recognition With Deep Learn-
ing. International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Vol. Volume 11A: 46th Design Automation Conference (DAC). https:
//doi.org/10.1115/DETC2020-22355| arXiv:https://asmedigitalcollection.asme.org/IDETC-
CIE/proceedings-pdf/IDETC-CIE2020/84003/V11AT11A003/6587023/v11atl 1a003-detc2020-
22355.pdf

Shijie Bian, Daniele Grandi, Tianyang Liu, Pradeep Kumar Jayaraman, Karl Willis,
Elliot Sadler, Bodia Borijin, Thomas Lu, Richard Otis, Nhut Ho, and Bingbing
Li. 2023. HG-CAD: Hierarchical Graph Learning for Material Prediction and
Recommendation in Computer-Aided Design. Journal of Computing and Infor-
mation Science in Engineering 24, 1 (10 2023), 011007. https://doi.org/
10.1115/1.4063226 arXiv:https://asmedigitalcollection.asme.org/computingengineering/article-
pdf/24/1/011007/7047936/jcise_24_1_011007.pdf

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR]. Stanford University — Princeton University — Toyota Technological Institute at Chicago.

Cheng Chen, Jiacheng Wei, Tianrun Chen, Chi Zhang, Xiaofeng Yang, Shangzhan Zhang, Bingchen
Yang, Chuan-Sheng Foo, Guosheng Lin, Qixing Huang, and Fayao Liu. 2025. CADCrafter: Gen-
erating Computer-Aided Design Models from Unconstrained Images. arXiv:2504.04753 [cs.CV]
https://arxiv.org/abs/2504.04753

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai
Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,
Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping

https://doi.org/10.1115/DETC2020-22355
https://doi.org/10.1115/DETC2020-22355
https://doi.org/10.1115/1.4063226
https://doi.org/10.1115/1.4063226
https://arxiv.org/abs/2504.04753

Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang,
Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma,
Yiyuan Liu, Yonggiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng
Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen
Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma,
Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia
Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. 2025. DeepSeek-V3
Technical Report. arXiv:2412.19437 [cs.CL] https://arxiv.org/abs/2412.19437

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. 2022. Objaverse: A Universe of
Annotated 3D Objects. arXiv preprint arXiv:2212.08051 (2022).

Elona Dupont, Kseniya Cherenkova, Dimitrios Mallis, Gleb Gusev, Anis Kacem, and Djamila Aouada.
2024. TransCAD: A Hierarchical Transformer for CAD Sequence Inference from Point Clouds.
arXiv:2407.12702 [cs.CV] https://arxiv.org/abs/2407.12702

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. 2019. Hybrid Actor-Critic Reinforcement Learning
in Parameterized Action Space. arXiv:1903.01344 [cs.LG] https://arxiv.org/abs/1903,
01344

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzman, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia,
Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.12702
https://arxiv.org/abs/1903.01344
https://arxiv.org/abs/1903.01344

Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shugiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian
Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
Yang, Zhiwei Zhao, and Zhiyu Ma. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.Al]
https://arxiv.org/abs/2407.21783

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. In
Proceedings of the 34th International Conference on Neural Information Processing Systems
(Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 574,

10

https://arxiv.org/abs/2407.21783

12 pages.

Pradeep Kumar Jayaraman, Joseph G. Lambourne, Nishkrit Desai, Karl D. D. Willis, Aditya Sanghi,
and Nigel J. W. Morris. 2023. SolidGen: An Autoregressive Model for Direct B-rep Synthesis.
arXiv:2203.13944 [cs.LG] https://arxiv.org/abs/2203.13944

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and Adriana Schulz.
2021. AutoMate: a dataset and learning approach for automatic mating of CAD assemblies. ACM
Trans. Graph. 40, 6, Article 227 (Dec. 2021), 18 pages. https://doi.org/10.1145/3478513,
3480562

Benjamin T. Jones, Michael Hu, Vladimir G. Kim, and Adriana Schulz. 2022. Self-Supervised
Representation Learning for CAD. arXiv:2210.10807 [cs.CV] https://arxiv.org/abs/2210,
10807

Benjamin T. Jones, Michael Hu, Milin Kodnongbua, Vladimir G. Kim, and Adriana Schulz. 2023.
Self-Supervised Representation Learning for CAD. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 21327-21336.

Timo Kapsalis. 2024. CADgpt: Harnessing Natural Language Processing for 3D Modelling to
Enhance Computer-Aided Design Workflows. arXiv:2401.05476 [cs.HC] https://arxiv.org/
abs/2401.05476

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. 2024a. CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise
Sketch Instance Guided Attention. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 4713-4722.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin Sheikh, Didier Stricker, Sk Aziz Ali, and
Muhammad Zeshan Afzal. 2024b. Text2CAD: Generating Sequential CAD Models from Beginner-
to-Expert Level Text Prompts. arXiv:2409.17106 [cs.CV] lhttps://arxiv.org/abs/2409,
17106

Mohammad Sadil Khan, Sankalp Sinha, Sheikh Talha Uddin, Didier Stricker, Sk Aziz Ali, and
Muhammad Zeshan Afzal. 2024c. Text2CAD: Generating Sequential CAD Designs from Beginner-
to-Expert Level Text Prompts. In Advances in Neural Information Processing Systems, Vol. 37.
Curran Associates, Inc., 7552-7579. |https://proceedings.neurips.cc/paper_files/
paper/2024/file/0e5b96£97c1813bb75f6c28532c2ecc7-Paper-Conference. pdf

Joseph George Lambourne, Karl Willis, Pradeep Kumar Jayaraman, Longfei Zhang, Aditya Sanghi,
and Kamal Rahimi Malekshan. 2022. Reconstructing editable prismatic CAD from rounded
voxel models. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA
’22). Association for Computing Machinery, New York, NY, USA, Article 53, 9 pages. https:
//doi.org/10.1145/3550469.3555424

Joseph G. Lambourne, Karl D.D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer,
and Hooman Shayani. 2021. BRepNet: A Topological Message Passing System for Solid Models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
12773-12782.

Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, L. Yi, and Leonidas J. Guibas. 2018. Supervised
Fitting of Geometric Primitives to 3D Point Clouds. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2018), 2647-2655. https://api.semanticscholar!
org/CorpusID:53715802

Pu Li, Jianwei Guo, Huibin Li, Bedrich Benes, and Dong-Ming Yan. 2024. SfmCAD: Unsupervised
CAD Reconstruction by Learning Sketch-based Feature Modeling Operations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 4671-4680.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. 2024.
LLaVA-NeXT: Improved reasoning, OCR, and world knowledge. https://llava-vl.github,
io/blog/2024-01-30-1lava-next/

11

https://arxiv.org/abs/2203.13944
https://doi.org/10.1145/3478513.3480562
https://doi.org/10.1145/3478513.3480562
https://arxiv.org/abs/2210.10807
https://arxiv.org/abs/2210.10807
https://arxiv.org/abs/2401.05476
https://arxiv.org/abs/2401.05476
https://arxiv.org/abs/2409.17106
https://arxiv.org/abs/2409.17106
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf
https://doi.org/10.1145/3550469.3555424
https://doi.org/10.1145/3550469.3555424
https://api.semanticscholar.org/CorpusID:53715802
https://api.semanticscholar.org/CorpusID:53715802
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. 2024. Draw Step by
Step: Reconstructing CAD Construction Sequences from Point Clouds via Multimodal Diffusion..
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
27154-27163.

Weijian Ma, Minyang Xu, Xueyang Li, and Xiangdong Zhou. 2023. MultiCAD: Contrastive Repre-
sentation Learning for Multi-modal 3D Computer-Aided Design Models. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management (Birmingham,
United Kingdom) (CIKM °23). Association for Computing Machinery, New York, NY, USA,
1766-1776. https://doi.org/10.1145/3583780.3614982

Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. 2020. PolyGen: An
Autoregressive Generative Model of 3D Meshes. ICML (2020).

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,

12

https://doi.org/10.1145/3583780.3614982

William Zhuk, and Barret Zoph. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
https://arxiv.org/abs/2303.08774

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019.
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Thomas Paviot. 2022. pythonocc. https://zenodo.org/record/7471333. https://doi.org/
10.5281/zenodo . 7471333 Accessed: 2025-06-08.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2016. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. arXiv preprint arXiv:1612.00593 (2016).

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. 2024.
XCube: Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. 2021.
High-Resolution Image Synthesis with Latent Diffusion Models. arXiv:2112.10752 [cs.CV]

Danila Rukhovich, Elona Dupont, Dimitrios Mallis, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. 2024. CAD-Recode: Reverse Engineering CAD Code from Point Clouds. arXiv preprint
arXiv:2412.14042 (2024).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG] https://arxiv.org/abs/1707|
06347

Gopal Sharma, Difan Liu, Evangelos Kalogerakis, Subhransu Maji, Siddhartha Chaudhuri, and
Radomir Méch. 2020. ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds.
arXiv:2003.12181 [cs.CV]

Tianchang Shen, Zhaoshuo Li, Marc Law, Matan Atzmon, Sanja Fidler, James Lucas, Jun Gao, and
Nicholas Sharp. 2024. SpaceMesh: A Continuous Representation for Learning Manifold Surface
Meshes. In SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers '24) (Tokyo, Japan,
December 3-6, 2024). ACM, New York, NY, USA, 11. https://doi.org/10.1145/3680528
3687634

Dmitriy Smirnov, Mikhail Bessmeltsev, and Justin Solomon. 2021. Learning Manifold Patch-Based
Representations of Man-Made Shapes. In International Conference on Learning Representations
(ICLR).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All You Need. arXiv:1706.03762 [cs.CL]
https://arxiv.org/abs/1706.03762

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2017. Pointer Networks.
arXiv:1506.03134 [stat. ML] https://arxiv.org/abs/1506.03134

Kehan Wang, Jia Zheng, and Zihan Zhou. 2022. Neural Face Identification in a 2D Wireframe
Projection of a Manifold Object. arXiv:2203.04229 [cs.CV] https://arxiv.org/abs/2203,
04229

Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-Amiri, and Hao
Zhang. 2020. PIE-NET: parametric inference of point cloud edges. In Proceedings of the 34th
International Conference on Neural Information Processing Systems (Vancouver, BC, Canada)
(NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 1693, 12 pages.

Xilin Wang, Jia Zheng, Yuanchao Hu, Hao Zhu, Qian Yu, and Zihan Zhou. 2025. From 2D CAD
Drawings to 3D Parametric Models: A Vision-Language Approach. In AAAI

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. 2022. Tianshou: a Highly Modularized Deep Reinforcement Learning Library.
arXiv:2107.14171 [cs.LG] https://arxiv.org/abs/2107.14171

13

https://arxiv.org/abs/2303.08774
https://zenodo.org/record/7471333
https://doi.org/10.5281/zenodo.7471333
https://doi.org/10.5281/zenodo.7471333
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3680528.3687634
https://doi.org/10.1145/3680528.3687634
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/2203.04229
https://arxiv.org/abs/2203.04229
https://arxiv.org/abs/2107.14171

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando
Solar-Lezama, and Wojciech Matusik. 2021. Fusion 360 gallery: a dataset and environment for
programmatic CAD construction from human design sequences. ACM Trans. Graph. 40, 4, Article
54 (July 2021), 24 pages. https://doi.org/10.1145/3450626.3459818

Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Generative Network for
Computer-Aided Design Models. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). 6772-6782.

Sifan Wu, Amir Khasahmadi, Mor Katz, Pradeep Kumar Jayaraman, Yewen Pu, Karl Willis, and
Bang Liu. 2024. CadVLM: Bridging Language and Vision in the Generation of Parametric CAD
Sketches. arXiv:2409.17457 [cs.CV] https://arxiv.org/abs/2409.17457

Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu, Yi Ma, and Shenghua Gao. 2024b. CAD-MLLM:
Unifying Multimodality-Conditioned CAD Generation With MLLM. arXiv:2411.04954 [cs.CV]

Xiang Xu, Joseph G Lambourne, Pradeep Kumar Jayaraman, Zhengqing Wang, Karl DD Willis, and
Yasutaka Furukawa. 2024a. BrepGen: A B-rep Generative Diffusion Model with Structured Latent
Geometry. arXiv preprint arXiv:2401.15563 (2024).

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. 2022. SkexGen: Autoregressive Generation of CAD Construction Sequences
with Disentangled Codebooks. In International Conference on Machine Learning. PMLR, 24698—
24724.

Yang You, Mikaela Angelina Uy, Jiaqi Han, Rahul Thomas, Haotong Zhang, Suya You, and Leonidas
Guibas. 2024. Img2CAD: Reverse Engineering 3D CAD Models from Images through VLM-
Assisted Conditional Factorization. arXiv:2408.01437 [cs.CV] https://arxiv.org/abs/2408!
01437

Haocheng Yuan, Jing Xu, Hao Pan, Adrien Bousseau, Niloy J. Mitra, and Changjian Li. 2024.
CADTalk: An Algorithm and Benchmark for Semantic Commenting of CAD Programs.
arXiv:2311.16703 [cs.CV] https://arxiv.org/abs/2311.16703

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten
Kreis. 2022. LION: Latent Point Diffusion Models for 3D Shape Generation. In Advances in
Neural Information Processing Systems (NeurIPS).

14

https://doi.org/10.1145/3450626.3459818
https://arxiv.org/abs/2409.17457
https://arxiv.org/abs/2408.01437
https://arxiv.org/abs/2408.01437
https://arxiv.org/abs/2311.16703

	Introduction
	Related Work
	Method
	CAD Representation for Neural Networks
	Data Preparation
	Factorized Hybrid Action Policy for PPO
	Reward Design

	Experimental Setup
	Results
	Validation Experiment
	Full Experiment

	Discussion & Conclusion
	Team Contributions

