Extended Abstract

Motivation Computer-Aided Design (CAD) programs are the fundamental building blocks for
a variety of scientific and engineering fields that requires precise modeling criteria. However,
automating CAD designs have been challenging, because there is a limited amount of data available
for training a fully supervised model. In this project, we explore the potential of using Reinforcement
Learning to address this issue, by training a CAD agent to reconstruct the CAD command sequence
from geometric rewards. By scaling up this approach, we can essentially leverage large-scale 3D or
2D data to train a CAD generator generating diverse assets with the full CAD command sequence.

Method We use Proximal Policy Optimization (PPO) to train a RL agent that predict the CAD
commands given an input 3D shape. We develop a factorized policy distribution that is capable of
outputting both discrete and continuous actions in order to accommodate the action space of CAD
generation. Specifically, we model a categorical distribution over the discrete choices and a Gaussian
distribution for the continuous parameters given a specific discrete action choice. We develop a
custom policy network architecture to accommodate the above policy factorization. The factorized
policy distribution has closed-form standard deviation and entropy terms, making it easy to integrate
it into a traditional PPO pipeline. For the rewards, we use a combination of two rewards that both
account for the geometric and formatting errors of the constructed CAD program w.r.t. the input
shape. Specifically, the geometric rewards measures the intersection-over-union (IOU) between
the current CAD reconstruction and the input shape. A higher IOU implies that the two shapes
are geometrically close to each other and vice versa. A formatting reward is assigned to punish an
episode whenever it fails to convert the current CAD command sequence into a valid CAD shape.
This happens when either invalid parameters are predicted or the CAD executions fail. In these cases,
a negative reward is added.

Implementation We implement a custom environment that builds the CAD program using the
Open Cascade [Paviot| (2022). For the policy network, we sample points on both the current CAD
shape and the ground truth shape and pass them through a PointNet Qi et al.|(2016). Together with
the current CAD command sequence, the encoded features are passed through the discrete head
network to predict logits for the categorical distribution over the discrete actions. Finally, concatenate
learned embeddings for each discrete action with the point features and the action sequence to output
the continuous distributions for each discrete action choice. The PPO algorithm is implemented on
top of TianShou Weng et al.| (2022) framework.

Results We conducted overfitting experiments where a specialized agent is fitted to reconstruct one
CAD shape using the abovementioned pipeline. We conducted two sets of experiments. The first
set uses a toy setting to validate the effectiveness of using RL for CAD modeling, and the second
experiment leverages the entirety of the above pipeline to train an RL agent for CAD modeling. The
validation experiment was able to output a CAD sequence that reconstructs the rough geometry of the
input shape. However, details are still missing, potentially due to the insensitivity of rewards to the
details. The full experiment was only able to output correct geometry when the CAD sequence was
short. This is potentially due to that we did not initialize our policy network from imitation learning,
making the initial exploration phase difficult.

Discussion & Conclusion This project investigates the potential of using RL algorithms for CAD
command sequence generation. Specifically, we developed a novel factorized action policy to
accommodate the hybrid action space of CAD modeling, as well as designed specific rewards to
encourage the RL to learn to reconstruct the input shape. Experimentally, the validation experiment
shows the promise in this direction for further investigation. For future steps, we would like to
pre-trained the action policy network with supervised training, so that the policy network starts
from more informative knowledge about the CAD command sequence. We believe that pre-training
would help the performance of RL for CAD generation. Further, we would like to incorporate more
semantically informative rewards using other modalities such as images or segmentation masks to
encourage the RL agent to fill in the details as well. Curriculum training could also be considered to
encourage the RL agent to learn the rough geometry first before attending to the geometric details.
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Abstract

This project investigates the potential of using RL algorithms for CAD command
sequence generation. Specifically, we developed a novel factorized action policy
to accommodate the hybrid action space of CAD modeling, as well as designed
specific rewards to encourage the RL to learn to reconstruct the input shape. Our
experiment demonstrates initial progress towards this direction, with the RL agent
capable of reconstructing the 3D shapes with only geometric and format rewards —
without using the full CAD command history as training data. By further expanding
upon this project, we could enable large-scale training on 3D shape dataset using
RL algorithms, alleviating the data bottleneck of CAD models with full modeling
history.

1 Introduction

CAD programs refer to computer-aided design programs, which are the fundamental building
blocks for a variety of scientific and engineering fields. Specifically, it represents 3D objects through
sequences of geometric instructions, commonly referred to as CAD commands, which defines editable
geometric components and operations. Despite the emergence of various 3D modeling software
(e.g., AutoCAD, SketchUp, Rhino, and FreeCAD), the design workflow persists as a technically
challenging and labor-intensive process: it is time-consuming and requires specialized expertise
from designers and/or engineers. In the design phase, they use CAD drawings for their precision
and ease of editability. During manufacturing, these drawings are converted into constraint-based
parameter tables, and for simulation, they yield boundary-representation (B-Rep) data or textual
geometry descriptions. While the full design history is not used for downstream applications, current
CAD software requires experts to design and modify the model, while the CAD programs need to be
frequently updated by communicating with the users. Therefore, it is desirable to develop a toolbox
with which the expert, or even the non-expert, can easily design the CAD models by using simple
instructions and illustrations to make the ideas in their mind easily come true.

With the advance of machine learning and Al generative models for 3D content, there are many works
that generates 3D shapes from text, images, and other user-friendly inputs. However, in contrast to the
fast development in 3D generative methods in other shape representations such as point clouds Zeng
et al.| (2022)), voxels |Ren et al.|(2024), meshes [Shen et al.|(2024)), and implicits |Park et al.| (2019)),
CAD program generation achieved limited success. So far, CAD program generation is mainly
limited to supervised training using full history CAD programs. While this approach treats CAD
programs essentially as text and thereby leverages the success of LLM pre-training, it achieved only
limited generation performance primarily due to the limited amount of training data, making the
training of large-scale neural networks capable of diverse output infeasible.

The goal of this project is to learn a policy network, which can act as a CAD program generative
model, that is able to perform CAD program generation using reinforcement learning. The motivation
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behind such an approach is to be able to optimize the policy network on shapes without ground truth
CAD programs using heuristic rewards, and therefore leverage existing large-scale 3D shape dataset
such as ShapeNet|Chang et al.|(2015)) and Objaverse Deitke et al.| (2022). Hopefully, this can help the
policy network to generate a greater variety of shapes without a groundtruth CAD program.

2 Related Work

CAD generation is a long-standing topic in computer graphics and machine learning. It can mainly
be categorized into two sub-directions for research.

BREP-based Shape Generation BREP 3D models are depicted as graphs, incorporating both
geometric primitives (e.g., parametric curves and surfaces) and topological primitives (e.g., vertices,
edges, and faces) that trim and stitch surface patches to form solid models |Xu et al.| (2024a). Earliest
works focused on BREP classification and segmentation, using a graphical neural network |Willis et al.
(2021);10./ (2020); Jayaraman et al.|(2023)), custom convolution kernels |Lambourne et al.| (2021)),
and hierarchical graph structures Jones et al.| (2022} 2021)); Bian et al.|(2023) to leverage the graph
properties of these shapes.

For generation tasks, previous approaches used predefined template curves and surfaces/Sharma et al.
(2020); Smirnov et al.| (2021)); Wang et al.| (2022, [2020); Li et al.| (2018)). Specifically, PolyGen |Nash
et al| (2020), the pioneer work in this area, uses a pointer network |Vinyals et al.| (2017) with
Transformers [Vaswani et al.| (2023) to generate n-gon meshes, which can be treated as a special
case of BREP shapes with planar faces and straight edges. SolidGen [Jayaraman et al.| (2023) and
BrepGen Xu et al.|(2024a)) can generate the entire BREP shape. SolidGen Jayaraman et al.| (2023)
first synthesizes vertices and then constructs them with the edge topology. BrepGen |Xu et al.| (2024a)
progressively denoises the faces, edges, and vertices utilizing Diffusion models |[Ho et al.| (2020).
Although B-rep is a direct representation of the boundary of the CAD model, and these generative
methods are able to obtain better performance because there is more data in this format; the generated
results do not contain the modeling history of the generation, limiting their abilities to perform
downstream editing or manipulation of the generated shapes.

CAD Program Generation The second area are methods that try to generate the full modeling
history along with the final CAD program.

Existing CAD program generation methods are used for reverse engineering the full CAD program
from input point clouds and/or images, text inputs. Point clouds are the most well-studied input
modality in CAD reconstruction. The seminal work on point cloud-based CAD reconstruction,
DeepCAD by |Wu et al.|(2021])), proposed encoding CAD sketch-and-extrude sequences as special
tokens. Beyond that, DeepCAD also proposed the first large-scale dataset of 180k hand-crafted
CAD modeled scraped from the OnShape online repository. Subsequent works [Chen et al.| (2025));
Khan et al.|(20244a)); Xu et al.| (2022); Dupont et al.| (2024)); Ma et al.| (2023)) adopted the same CAD
representation and trained on the same DeepCAD dataset. More recently, CAD-Recode [Rukhovich
et al.[(2024) introduced a paradigm shift by representing CAD models as Python code, providing
greater expressiveness and flexibility, and released a new training dataset of approximately 1 million
procedurally generated CAD samples. More recently, works |Chen et al.|(2025);|You et al.| (2024));
Yuan et al.|(2024); [Wang et al.|(2025); Khan et al.| (2024b) have explored CAD reconstruction from
other input modalities, such as single- or multi-view images and natural language descriptions. These
approaches extend the DeepCAD dataset by rendering synthetic views or generating textual captions
for existing CAD models. Among them, CADCerafter Chen et al.| (2025) proposes an unified frame-
work that handles both single- and multi-view inputs using a latent diffusion model Rombach et al.
(2021) to sample from the latent space of DeepCAD. For text-to-CAD generation, Text2CAD [Khan
et al.|(2024b)) uses a vision-language model (VLM) to generate captions for CAD programs in the
DeepCAD dataset and trains an autoregressive model to predict the corresponding sketch-and-extrude
sequences given these text inputs. Finally, with the advance of Multimodal LLMs |OpenAl et al.
(2024); [Liu et al.| (2024); |Grattafiori et al.|(2024)), works such as CAD-GPT Kapsalis| (2024) and
CAD-MLLM Xu et al.|(2024b) takes in multimodal input conditioning to reconstruct the desired CAD
programs. They both fine-tune existing Multimodal LLMs on DeepCAD programs with multimodal
annotations.
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Figure 1: Method Overview. (Left) Example of a CAD construction process adopted from Deep-

CAD (2021)) using the sketch-extrude paradigm. (Right) The proposed factorized policy
network that separates the discrete actions (7(d|s)) and the continuous actions (7 (c|d, )).

A pioneering work in this area is DeepCAD (2021). In this work, the authors proposed to
focus on the type of CAD programs built solely with sequences of sketch-extrude operations, and
proposed a dataset containing CAD programs with modeling history. Building on the task setup of
DeepCAD, many works [Xu et al | (2022); Ma et al.| (2023)); [Khan et al.| (2024a); [Chen et al.| (2025));
[Dupont et al.| (2024); [You et al.| (2024); Ma et al.|(2024) improves upon it by extending the method to
more tasks such as CAD prediction from images |You et al.| (2024), voxelsLambourne et al.|(2022),
and texts [Khan et al.| (2024c); [Wu et al/| (2024). However, all of these works rely on full supervision

using the DeepCAD dataset, fundamentally limiting the scale and variety of their generated CAD
programs. In our work, we will also focus on generating CAD programs in this paradigm. However,
in contrast to these methods, which require supervision on the modeling history, reinforcement
learning allows us to update the policy network using 3D shapes without CAD modeling history.

Past literature also tried to use unsupervised learning approaches to directly generate CAD programs
in the sketch-extrude paradigm [Li et al. (2024); Jones et al.| (2023)). However, these approaches
typically only allows for a limited sequence length, and thereby restricting the representation power of
these methods. For us, however, the policy network can generate the operations in an auto-regressive
manner; therefore, in theory, achieve infinite-length CAD operations.

3 Method

We detail our approach to using reinforcement learning for CAD program generation below. Specif-
ically, Sec. 3.1] details the sketch-extruce CAD construction process we adopt for this paper. In
Sec. we present our data preparation process together with statistics of the datasets. Finally, in

Sec.|3.3|and Sec.[3.4] we outline how we adopt Proximal Policy Optimization (PPO)
(2017) for CAD program generation as well as the rewards we use to training PPO.

3.1 CAD Representation for Neural Networks

CAD programs consist of two levels of representation. When users are designing a CAD model,
they will perform a sequence of operations in a CAD software to create a solid shape. Typically,
different CAD software contains a different set of operations. For example, users may draw a set of
closed curves and lines on a 2D plane, and then perform extrusions on faces formed by the curves to
convert them into 3D shapes. Other common operations include sweeping, revolving, and lofting,
all of which define 3D shapes using 2D faces on the sketch. Additionally, different 3D primitives
created this way are further processed by other operations such as a boolean union, difference, or
intersection to create the final desired 3D model (see Fig. |I| (left)). We refer to such a specification as
a CAD command sequence.

As the users are creating the CAD models using a sequence of commands, the CAD software builds
a kernel representation of the CAD program, widely known as the boundary representation (or

BREP) Xu et al| (2024d); Lambourne et al.| (2021). BREP describes a solid purely by the topology

and geometry of its outer shell: vertices store points, edges link the vertices following pre-defined
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Figure 2: The DeepCAD Dataset

curves, and faces are formed by patching together edge loops on analytic or spline surfaces. While
BRERP is usually the output format for standard industry software, shapes represented this way cannot
be as easily edited by casual users as the CAD command sequence.

In this work, we aim for a generative model of CAD command sequences. Specifically, following prior
works [Wu et al.| (2021); [Xu et al.| (2022)), we adopt the sketch-extrude paradigm for CAD modeling.
While previous works use full supervised learning to learn how to generate CAD programs from
human demonstrations, in this project we explore the usage of reinforcement learning to automatically
discover CAD command sequence from 3D geometric rewards.

3.2 Data Preparation

This project requires both a CAD dataset with a full CAD modeling command sequence. To this end,
we will use the DeepCAD dataset[Wu et al| (2021)), which contains around 120k CAD programs from
the OnShape Repository, filtered to only contain sketch-extrude types of operation. The sequence
length of shapes in the dataset varies, but with most of the shapes ranging between 1-4 operations in
total. See Fig. [2|for the sequence length statistic (left) as well as the CAD program in the DeepCAD
dataset with the longest sequence length (right).

DeepCAD dataset consists mostly of mechanical parts designed for engineering purposes. To increase
the diversity of the data shapes, we also consider other datasets. While we did not have time to explore
other datasets besides the DeepCAD dataset, to train the RL policy on shapes without groundtruth
CAD operations, we also consider adopting the large-scale ShapeNet dataset/Chang et al.| (2015)),
which contains clean 3D models with manually verified category and alignment annotations. It covers
55 common object categories with about 51,300 unique 3D models. ShapeNet has been used for
many 3D machine learning tasks due to its combination of variety, cleanness, and annotation richness.
Thus, it will be a good starting point for this project to test the feasibility of fine-tuning the policy
network for the generation of more complex shapes.

3.3 Factorized Hybrid Action Policy for PPO

After processing the DeepCAD dataset, we delineate how we design our policy network and adopt
PPO for CAD generation with reinforcement learning.

As discussed in previous sections, modeling a CAD program requires both discrete actions, such
as choosing types of curves to draw (lines, arcs, and circles), and the shape boolean operations to
use (union, difference, and intersection), and continuous actions, including the parameters for each
CAD modeling command. To this end, we require our action policy network to be able to output both
continuous actions and discrete actions.



Below, we formalize the above discussion. Let D be the random variable corresponding to the
discrete actions and C' be the r.v. corresponding to the continuous actions. Given state s, we wish
to model the action distribution g (C, D|s), that is, the probability of choosing one continuous and
discrete action given the current state s. Now, because the continuous actions in CAD programs are
only determined after the discrete choices are made, we can factorize the action policy to

7o (C, D|s) = w (C|D, s) w9 (D]s) . (1

Compared to the left hand side, the right hand side’s factorized distribution allows us to separate the
prediction of the discrete distribution 7y (D|s) and the continuous distributions 7 (C|D, s) given a
discrete action choice D. Comparing with other approaches to modeling a hybrid action space, such
as discretizing the continuous space into fixed bins, this approach losslessly retains the full precision
of the continuous parameters. Moreover, while other appaoches such as Hybrid PPO |Fan et al.| (2019)
require a different algorithm to handle hybrid action sequences, the factorized policy can be plugged
into any RL algorithms without modifications.

To model the factorized policy, we construct a custom policy network that respects the probability
diagram. As shown on the right side of Fig.[I] we first use the information from the state s to
predict the discrete action via the discrete head. Then, for each discrete action, we predict a separate
continuous distribution (Gaussian in our experiments) that parametrizes 7y (C|D, s). Notice that
it is crucial to predict one distribution for each discrete action D, since the continuous part of the
factorization given in Eq.[I]depends on the discrete action D.

3.4 Reward Design

How to design a reward function so that it can give the policy network meaningful optimization
signal becomes one of the keys to the success of PPO training. We adopt two reward functions in our
training. The first reward is a geometric one, where we encourage the reconstructed CAD sequence
to be as close as possible to the input ground truth shape. To this end, we use intersection-over-union
(IOU) as the geometric reward. Specifically, given two shapes S, S’, the IOU reward is defined as
1SN

I0U(S, S") SUS 2
where |\S N 5’| is the volume of the intersection of .S and S’ and |S U S’| is the volume of their
union. Notice that when S = 5’ their IOU score will be 1, as their intersection and their union
will equal exactly. In general, a higher value of IOU indicates a better similarity between the two
shapes. Thus, PPO that maximizes this reward will encourage the reconstructed CAD sequence to be
as geometrically close as possible to the target.

The second reward term we adopt is similar to the format reward used when training for LLM’s
reasoning capability DeepSeek-Al et al.[(2025). Specifically, because the CAD reconstruction from
a sequence of CAD commands sometime will fail to execute, we want to punish the agent from
outputting such a command sequence. Therefore, we assign a negative reward Rp(S) = —10
whenever the CAD execution of S fails.

In total, the reward at every environment step consists of the sum

R(S, S/) =100 - IOU(S, S/) + Rfail(S). 3)

4 Experimental Setup

Following what is described in Sec. 3] we implement a PPO training for CAD generation. Specifically,
we implement a custom gym environment that builds the CAD program using the Open Cascade|[Paviot
(2022). At every environment step call, the environment will build the CAD model from the current
CAD command sequence and evaluate the aforementioned rewards.

As inputs to the policy network, the CAD shapes will first sample points from their surfaces, and
be passed through a PointNet |Qi et al.|(2016)) to be encoded as a latent feature. Together with the
current CAD command sequence, the encoded feature are passed through the discrete head network
parameterized as a 3 layer MLP to predict logits for the categorical distribution over the discrete
actions. Finally, concatenate learned embeddings for each discrete action with the point features
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Figure 3: Visualization of the initial results.

and the action sequence to output the means of the continuous actions for each discrete choice. The
variance of each continuous distribution is a learnable variable.

The PPO algorithm is implemented on top of TianShouWeng et al.| (2022) framework, with a buffer
size of 750 steps and a constant learning rate of 1e — 3. We use a clip ratio of 0.2 and an entropy
regularization weight of 0.05. We also use advantage normalization and gradient norm clipping to
stabilize the optimization.

5 Results

Due to time constraint, we only conducted overfitting experiments where a specialized agent is
fitted to reconstruct one CAD shape using the abovementioned pipeline. We conducted two sets
of experiments. The first set uses a toy setting to validate the effectiveness of using RL for CAD
modeling, and the second experiment leverages the entirety of the above pipeline to train an RL agent
for CAD modeling.

5.1 Validation Experiment

The initial experiment was conducted by training an RL algorithm to predict only the discrete actions.
To make the RL task easier, we manually created a sequence of actions to take for the agent to
reconstruct the entire CAD program. This way, the difficulty of predicting continuous actions is
eliminated for now. The agent is trained with Chamfer Distance only w.r.t. to the target CAD program.
In this way, supervised pre-training is not used.

Fig. 3] shows the results of a single CAD program overfitting under this setting. Notice that the
reconstruction is able to get the overall geometry of the CAD program. However, it misses details
such as holes on the side or protrusions at the bottom of the square on the top row, and the outer edges
in the bottom row. This is due to the insensitivity of the reward function, a.k.a., Chamfer distance,
w.r.t. to small geometric details. However, this do provide a promising starting point for using PPO
for CAD modeling.

5.2 Full Experiment

We use the pipeline described in Sec. [33]and Sec. [3:4]to train a PPO algorithm to predict the CAD
command sequence. Compared to the validation experiment above, the full experiment requires the
agent to predict both continuous and discrete actions correctly for the final CAD model to be similar
to the input shape. Thus, this setting is much harder compared to the previous one, which resulted in
less performant results.

Fig. @] shows a successful case in which the agent is able to reconstruct the input shape relatively well.
In this case, the agent learned to place the primitives correctly at the right orientations and locations,
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as well as choose the correct Boolean operations. However, the results on more complicated shapes
the involves either more steps for constructions or negative Boolean operations such as cutting or
differencing, faced convergence issues. Specifically, as shown in Fig.[5] the PPO training is stuck at
local minima for certain shapes (e.g., shape 00478620 in the figure), because the model did not learn
to take the correct step and had a collapsing action distribution. This might be due to it requirement of
using a shape intersection shape to obtain the final shape, which might be hard for the RL algorithm
to learn, as the initial attempts of doing so would lead to negative rewards. Further investigation
is needed in terms of the choice of hyperparamters as well as the RL algorithm for making the
convergence better.

6 Discussion & Conclusion

This project investigates the potential of using RL algorithms for CAD command sequence generation.
Specifically, we developed a novel factorized action policy to accommodate the hybrid action space of
CAD modeling, as well as designed specific rewards to encourage the RL to learn to reconstruct the
input shape. While the results are not as high quality as we had wished for, the validation experiment
does show the promise in this direction for further investigation. For future steps, we would like to
pre-trained the action policy network with supervised training, so that the policy network starts from
more informative knowledge about the CAD command sequence. We believe that pre-training would
help the performance of RL for CAD generation. Further, as noted in the validation experiment, the



geometric reward currently does not reflect the accuracy of small geometric details. Thus, we would
like to incorporate more semantically informative rewards using other modalities such as images or
segmentation masks to encourage the RL agent to fill in the details as well. Curriculum training could
also be considered to encourage the RL agent to learn the rough geometry first before attending to the
geometric details.

7 Team Contributions

* George Nakayama: Sole author of the project.

Changes from Proposal Due to time and computational budget constraints, we did not have time
to implement supervised fine-tuning as described in the proposal. We also did not get a chance to test
on ShapeNet and other more large-scale datasets, as we have only conducted overfitting experiments.
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